Tema 5: Propiedades de las funciones


 Las funciones tienen ciertas características que nos ayudan a entender su comportamiento en la gráfica. Las más importantes son:

Dominio y Rango:

  • El dominio (D) son los valores de entrada (x) que la función acepta.
  • El rango (R) son los valores de salida (y) que la función puede tomar.

Creciente, Decreciente y Constante:

  • Una función es creciente si al aumentar x, también aumenta y.
  • Es decreciente si al aumentar x, y disminuye.
  • Es constante si y se mantiene igual sin importar x.

Simetría:

  • Funciones pares: Simétricas respecto al eje y (ejemplo: f(x) = x²).
  • Funciones impares: Simétricas respecto al origen (ejemplo: f(x) = x³).

Intersecciones y asíntotas:

  • Intersecciones: Puntos donde la función cruza los ejes x y y.
  • Asíntotas: Líneas que la función se acerca pero nunca toca.

Ejemplo Resuelto

Encuentra el dominio y el rango de f(x) = √(x - 2).

Dominio: La raíz cuadrada solo existe si x - 2 ≥ 0, entonces x ≥ 2. esto es debido a que en las raíces no podemos tener términos negativos por lo que si tomamos términos menores a 2 tendrás términos irreales 
Rango: Como la raíz cuadrada solo da valores positivos, el rango es y ≥ 0.


Retos rápido:
 Encontrar el dominio y el rango de la función f(x) = x³  y ¿Dónde cruza el eje x?


Apoyo visual





No hay comentarios:

Publicar un comentario